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Kyle Gallivan † Ulrike Meier Yang ‡

May 2, 2003

Abstract

Various options for sequential, shared memory and distributed memory implemen-
tations for the CLJP algorithm, a parallel coarsening scheme within algebraic multigrid,
are discussed. The use of different data structures as well as different approaches of
implementating the actual algorithm are investigated, and experimental results illus-
trating the results are presented.

1 Introduction

With the advent of large high performance computers with large number of processors,
it has become necessary to design parallel algorithms of all sorts. Particular emphasis
has been placed on the development of scalable algorithms, such as multigrid methods.
With this in mind, the parallelization of algebraic multigrid, a method that can be ap-
plied to a linear system, Ax = b, without additional knowledge, such as the underlying
finite elements or a grid, has become very important. AMG proceeds by determining
a subset of the original degree of freedoms through a coarsening algorithm, an inter-
polation operator that transfers from the coarse space to the fine space, a restriction
operator that transfers from the fine space to the coarse space. Among those proce-
dures, the classical coarsening scheme is highly sequential, it was therefore necessary
to develop a parallel scheme.
In this paper, we examine the implementation of the CLJP algorithm. Various

options for sequential, shared memory, and distributed memory implementations are
discussed. The major characteristic determining the form of the algorithm is the form
of the data structure assumed. We consider three different versions, one that uses row
oriented storage, denoted ’CSR’, one with column oriented storage, denoted ’CSC’,
and a modified version, denoted ’mod’, that assumes that both forms are available.
The ’CSC’ scheme is equivalent to using the transpose of the strength matrix. There
are some interesting differences in implementing this algorithm depending on which
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matrices are available. We investigate how the different storage schemes influence the
implementation and performance of the algorithm and consider the tradebacks. The
high variations in performance for the different implementations show the importance
of making the right decision on what storage scheme to choose.

2 The CLJP Algorithm

The Cleary-Luby-Jones-Plassman (CLJP) parallel coarsening algorithm was proposed
by Cleary [1, 2], and is based on parallel graph partitioning algorithms introduced by
Luby [4] and developed by Jones and Plassman [3].
The goal of the algorithm is to partition the degree of freedoms of the nonsymmetric

matrix of the linear system Ax = b to be solved into coarse (C) and fine (F ) points.
To select the C-points, we seek those unknowns xi that can be used to represent the
values of nearby unknowns xj . This gives rise to the concepts of dependence and
influence. A point i depends on the point j if the value of the unknown xj is important
in determining the value of xi from the i-th equation, i.e. j influences i.
We define S, the auxiliary influence matrix:

Skl =

{

1 if l ∈ Sk,
0 otherwise.

(1)

That is, Skl = 1 only if k depends on l. The kth row of S gives Sk, the set of
dependencies of k, while the kth column of S gives ST

k , the set of influences of k. We
can then form the directed graph of S, and observe that a directed edge from vertex
k to vertex l, (k, l), exists only if Skl 6= 0. The k-th row Sk contains the indices of
the nodes that are destinations of outgoing edges from node k. The k-th column ST

k

contains the indices of the nodes at the sources of incoming edges to node k.
To each point k we define a measure µ(k) = |ST

k | + σ(k), the number of incoming
edges of point k or the count of nonzeros in the corresponding column of S plus a
random number in (0, 1). The random number is used as a mechanism for breaking
ties between points with the same number of influences, thus allowing the definition of
local maxima in the graph. We then select the set C of local maxima, i.e. the set that
consists of the points k, for which µ(k) > µ(l) for all l ∈ Sk ∩S

T
k (all points that either

influence or depend on k). By construction, this set will be independent.
An example of the weight definition and coarse point selection is given in Figure 1.
Once the independent set C is chosen, we modify the graph according to the fol-

lowing pair of heuristics, which are designed to ensure the quality of the coarse-grid
while controlling its size.

H1: Values at C-points are not interpolated; hence, neighbors that influence
a C-point are less valuable as potential C-points themselves.

H2: If k and l both depend on j, a given C-point, and l influences k, then l
is less valuable as a potential C-point, since k can be interpolated from
j.

The algorithm now proceeds by defining a sequence of sets of coarse nodes and
updating the graph in response to each of these sets. After each update, each node
of the original graph is in one of three states: coarse, fine, or undetermined. The key
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Figure 1: Weights and Coarse Point Selection

components of the algorithm are: the selection of the next set of coarse nodes from
the current set of undetermined nodes; the update of the edges associated with the
current set of undetermined nodes to the set associated with the nodes that remain
undetermined after removal of the next set of coarse nodes; and the selection of the
fine nodes after the updates have been made.
The graph, Gi, is defined by the undetermined nodes, Vi, and remaining edges Ei

after the removal of edges and coarse nodes in sets Cj , j < i and the induced fine
nodes Fj , j < i. For example, G1 is the original graph, C1 ⊂ V1, is the initial coarse
set, V2 = V1 −C1 − F1, and E2 ⊂ E1 are the sets of nodes and edges respectively that
follow from the application of the update rules to G1 given C1.
The heuristicsH1 andH2 are implemented as follows. The edges in Ei are updated

based on the selection of Ci by removing all edges, e = (p, v), that satisfy one of the
following:

• p ∈ Ci (the edge’s source is a coarse point)

• v ∈ Ci (the edge’s destination is a coarse point)

• ∃(p, u) ∈ Ei, (v, u) ∈ Ei such that u ∈ Ci (the edge connects two nodes that are
the sources for edges with a common coarse point destination)

As the edges are removed, the weights associated with the destination node of each
edge must be decremented in preparation for the determination of Ci+1.
An example of the edges removed from a graph is given in Figure 2. The edges that

are removed are slashed. Coarse points are labeled with a C. Edges (w, p) and (p, x)
are the only ones retained.
After removal of the edges and the update of the weights Fi is taken to be all nodes

with an updated weight less than 1. This implies that all incoming edges to the node
have been removed. Note that this does not imply that all outgoing edges have been
removed and care must be taken to have any destination nodes of such edges processed

3



v

c c x

p
wu

21

Figure 2: Edge updates

correctly and eventually become coarse nodes. The approach to guarantee this depends
on the particular implementation and the data structures used.

3 Implementation

There are basically three ways of implementing the algorithm, The first one assumes a
row-oriented storage scheme for the influence matrix and is denoted ’CSR’. The second
one, denoted ’CSC’, assumes a column-oriented storage scheme and is equivalent to
using the ST or the dependence matrix with a row-oriented storage scheme. The third
implementation, which we call modified implementation or ’mod’, assumes that both
S and ST are available and can be used in the coarse grid selection process.
The choice of the storage scheme has a significant influence on the implementation.

The algorithm consists basically of two passes, one of which is fairly similar in each
of the three implementations. The second pass is however significantly different. In
the following paragraph, the first pass is described in generic set-like pseudocode, fol-
lowed by descriptions of the second pass for each implementation in the subsequent
subsections. Implementation details are ignored until later sections, which consider
sequential, distributed memory and shared memory implementations.

3.1 Pass 1 (Removal of C- and F -Points and Determina-
tion of Local Maxima

The first pass through Gi in this version of the algorithm is used to remove the coarse
nodes Ci from Gi. (Of course, since Sn is not needed again once a node is determined
to be coarse it is not really necessary to remove the edges in Sn, i.e., the whole row is
removed from consideration when n is removed from Gi.) It is also used to accomplish
two other important tasks: the identification of Fi and the examination of the weights
to determine new local maxima and therefore Ci+1. The weights have been completely
updated at the end of the first pass but in order to use a simple row-oriented test to
identify the local maxima some care must be taken in the implementation to avoid the
need for an extra pass through the vector that is used to store the status of the node,
i.e., fine, coarse, undetermined. This is discussed in Section 4. Note that the code
assumes that a node currently in Gi is going to be coarse in Gi+1 and the tests below
mark it (possibly multiple times) as noncoarse. As a result, it is only at the end of this
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pass that any node is known to be in Ci+1 or not. The operations can be organized to
consider each node and elements of its row once.
The only potential complication is the handling of a degenerate case of a fine node.

Since a node becomes fine as soon as its weight becomes less than 1, i.e., its column
count is 0, it is possible to have a fine point that still has a nonzero row count indicating
the presence of outgoing edges from the node. The difficulty arises not with the fine
node but with the nodes to which it points via the remaining edges in the row. This
destination node must become coarse. If however the fine node is removed and the
weight of the destination decremented, the destination may become a fine node. As a
result, for the CSR version, a node is made fine, when its weight drops below 1 and
all of its row edges have been removed, which can easily be verified by checking Sf .
For the column-oriented version and possibly the modified implementation, a two-step
approach is taken, where an F -point is marked as ’potentially fine’ and kept in Gi, and
if its status hasn’t been altered to nondetermined after the next sweep through the
algorithm, it is marked ’fine’ and removed from Gi+1. The modified version has both
the row- and the column-oriented structure and it might therefore be possible to find
whether there are still outgoing edges from a potentially fine point by investigating Sf .
It is however fairly expensive to keep both S and ST up to date with regard to removed
edges and ST is more likely to be the ’working’ structure (see Section 3.4). Therefore
it is recommended to use the same approach as used for the CSC implementation.
Nodes that have a weight below 1 with a nonzero row count are referred to as

delayed fine nodes. To see that the nodes in Sf where f is a delayed fine node must
eventually become coarse and f converted to fine status, consider the following cases.
First, if, as expected, all of the remaining nodes in Sf are marked coarse, then the

row count of f must reach 0 and its weight, µ(f), is still below 1 indicating that it
will be marked fine and removed from the graph. Second, a node u ∈ Sf cannot be
marked fine since the edge (f, u) remains in the graph until f is removed and therefore
µ(u) > 1 until then as well. Third, if u ∈ Sf is not made coarse by becoming a local
maxima during the normal processing of nodes it must reach a state where the only
nodes left defining its column are delayed fine nodes, i.e., u ∈ Sv → v is a delayed fine
node. As a result, µ(u) > 1 makes it a local maxima, and it is marked coarse.
The code for Pass 1 is as follows:

for each node n ∈ Gi

if n ∈ Ci then (the node is coarse)
(1) remove all edges in Sn

remove n from Gi

else if µ(n) < 1 and ‖Sn‖ = 0 then (the node is fine)
add node to Fi and remove it from Gi

else (node stays for Gi+1)
(2) remove all marked edges from Sn

(3) for v ∈ Sn (all unmarked edges)
if µ(n) > µ(v) then v /∈ Ci+1

if µ(n) < µ(v) then n /∈ Ci+1

(3) end for
end if

end for
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Note that for the CSC and the modified implementation Sn in (1), (2) and (3) need
to be replaced by ST

n .

3.2 CSR implementation

In this section, the second pass of the algorithm is described in the CSR implementa-
tion. The row-oriented storage is exploited in that each node, v, has an associated struc-
ture Sv containing the nodes that define edges with source v, i.e., p ∈ Sv → (v, p) ∈ Ei.
Assuming that the weights have been assigned to all nodes in V1 and C1 has been

constructed based on local maxima, the algorithm consists of a loop over Gi that marks
edges for removal based on their relationships to points in Ci. Each iteration of loop
requires the weights and status information associated with each node in Gi.

for each n ∈ Gi

if n ∈ Ci (the node is coarse)
(4) for each v ∈ Sn

mark edge (n, v) for removal
decrement µ(v) by 1

(4) end for
else (the node is undetermined)

(5) for each v ∈ Sn ∩ Ci

mark edge (n, v) for removal
decrement µ(v) by 1

(5) end for
(6) for each v ∈ Sn such that

(n, v) is not marked for removal (noncoarse)
if (Sn ∩ Ci) ∩ (Sv ∩ Ci) 6= ∅ then
mark edge (n, v) for removal
decrement µ(v) by 1

end if
(6) end for

end if
end for

The coarse nodes in Ci are processed by loop (4). Edges whose source is the coarse
node, e.g., edges like (c, x) in Figure 2, are removed. Since the edge affects the column
count of the destination node, the weight of v, µ(v), must be decremented.
The nodes in Gi that are not coarse are processed by loops (5) and (6). The

processing can be organized in several ways and is complicated by the fact that edges
connecting a noncoarse node to a particular coarse node via paths of lengths 1 and 2
must be identified. In this case (5) identifies the paths of length 1 from a noncoarse
node to a coarse node, effectively removing edges to nodes in the intersection of Sn and
Ci. Loop (6) can exploit the fact that this intersection has already been identified in
loop (5). The first edge in a path of length 2 from n to a coarse point c for which (n, c)
also exists is identified in loop (6). The edge (u,w) in Figure 2 is an example of this
type. Only one node need be found in the intersection of the coarse points connected
to n and the coarse points connected to v by outgoing edges in order to remove edge
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(n, v). Note that only noncoarse nodes in Sn are considered since marked nodes at this
point correspond to edges that are connected to coarse nodes, i.e., marked in loop (5).
This portion of the code is the source of the requirement of using the operation

”mark edge for removal” rather than removing an edge when it is deemed necessary
to do so. Consider the nodes u, w and the coarse node c2, to which they are both
connected in Figure 2. Loop (5) could remove the edge (w, c2) from Gi. However,
if this were done, i.e., node w was processed in (5) before node u, the information
required to determine that edge (u,w) must be removed would not be available when
Sw was examined during the processing of Su. As a result, edges (or more precisely
their destination nodes stored in the row data structure) are marked for removal by
a second pass through Gi. On the second pass, described below, the state of the
node/edge is changed to “removed”. The removed state is needed in order to avoid
considering the edge repeatedly and for no purpose in later iterations. The maintenance
of the three states and the isolation of the nodes/edges that have been removed from
those that are still undetermined influences the implementation and the effectiveness
of particular data structure choices. Note a coarse node and its row can be removed
immediately after it is identified, since it does not affect the situation above. In the
version described here, the removal of coarse nodes and their rows are delayed until
the second pass handling Gi. Exactly when in a particular algorithm this is possible
depends on the method of identifying Ci. In the algorithm presented here, Ci is not
known until the end of the second pass that processes Gi−1. So the earliest Ci can be
removed is during the first pass handling Gi.

3.3 CSC implementation

CLJP coarsening using column-oriented structure is in some respects much simpler
than the row-oriented implementation, and it has more promise for an efficient parallel
implementation. An initial sequential version is presented here. A modified version
and comments on the use of some row information to improve efficiency are discussed
in Section 3.4.
Once again assume that the algorithm will update Gi given Ci by passing through

all active nodes and edges in Gi. Each node may be coarse or not, and this distinction
is once again used to define the algorithm.
Consider first the case where the node is not coarse, e.g., node x in Figure 2. The

edges (c2, x) and (p, x) are indicated by the node data in S
T
x . Clearly, the edge (c2, x)

can be removed. The decision whether edge (p, x) should be removed requires the
more complicated processing of determining whether or not p and x are connected
to a common coarse point. In this version of the algorithm this decision is made
when visiting the common coarse point. So for noncoarse nodes, this version of the
algorithm only removes incoming edges, whose sources are coarse nodes. Marking for
later removal is not required, since the edge will play no role in processing other nodes
in Gi.
Coarse nodes perform the bulk of the edge removal in this form of the algorithm.

The goal is to remove edges pointing to the coarse node, e.g., (u, c2) in Figure 2 by
removing the coarse node and its column from Gi and edges between nodes that each
have edges to the coarse node, e.g., (u,w) in Figure 2. This can be done quite simply
in terms of the column structures, and the edges can be marked for removal in the
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noncoarse node columns and then removed upon completion of the processing of the
individual coarse node and not in a second pass through Gi.
Essentially, each noncoarse node, v, that is contained in ST

n for a coarse node n
must be considered. Edges such as (u,w) in Figure 2 are identified and used to update,
not ST

n , but the S
T
v where v ∈ ST

n . In the case of Figure 2, when processing S
T
c2
, the

information in ST
w must be examined and updated since w ∈ S

T
c2
. The edge (u,w) must

be removed from Gi and therefore u must be removed from ST
w . Since u ∈ ST

c2
, the

node is easily identified as a member of ST
c2
∩ ST

w and all nodes in that set must be
removed from ST

w (in this case only u).

for each n ∈ Gi

if n /∈ Ci then (the node is not coarse)
for each v ∈ ST

n

if v ∈ Ci then
remove edge (v, n) and decrement µ(n)

end if
end for

else (node is coarse)
for each v ∈ ST

n

Compute S = ST
n ∩ S

T
v

Remove edges (p, v) from ST
v where p ∈ S

Decrement µ(v) by ‖S‖
end for
(7) (optional: Remove n and ST

n from Gi)
end if

end for

Note that it is possible to remove coarse nodes from Gi in this pass, as indicated
by statement (7). If this option is chosen, C-nodes do not need to be eliminated from
Gi in Pass 1. Numerical experiments indicate that this option does not improve per-
formance. Note that in this version of the algorithm, coarse and noncoarse processing
is intermingled. As a result, when processing a coarse node c, ST

c may contain a mix
of noncoarse nodes that have already been processed and those that have not been
processed. This does not affect the correctness of the algorithm. It only effects when
edges from a coarse node to a noncoarse node may be removed, if the coarse node and
noncoarse node have a common coarse neighbor. This can be seen in Figure 3. The
edge (c1, v) may be removed when processing the noncoarse node v or the coarse node
c2.

3.4 Modified Implementation

The previous algorithm using column storage has as its main processing step the update
of undetermined nodes that are within the column of a coarse node. In this step, a fan-
out approach is taken, i.e., for each coarse node all of the columns of the undetermined
nodes are updated based on the column of the current coarse node. While this form
is appealing due to its simplicity, it has some potential problems with shared and
distributed memory parallelism due to synchronization and communication.
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The algorithm can be reorganized to concentrate the processing on undetermined
nodes by merging the first loop where incoming edges with coarse sources are removed
with an altered form of the second loop that updates each undetermined node based
on several coarse nodes.
In order to see the reorganization, consider node w in Figure 4. The edge from c1

to w is contained in ST
w and all such edges are removed by S

T
w − S

T
w ∩Ci. The value of

µ(w) should be updated accordingly. The edges from w to c2 and u to c2 are removed
when the coarse node c2 is removed from the graph. This does not affect µ(w). These
two actions remove all edges involving w and a coarse node.
The edge (u,w) is representative of those that are in a path of length two from u

to a coarse node also reachable from u by a single edge. A characterization identifying
coarse nodes such as c2 and undetermined nodes u is needed to complete the modified
algorithm.

The set of coarse nodes like c2 is easily characterized as Tw =
{

c ∈ Ci|w ∈ S
T
c

}

.

However, we need to relate this directly to a data structure element of w. Clearly we
have the following Tw = Sw ∩ Ci. If the row-oriented data structure is not available,
Sw must be constructed for each w by a simple process of scanning all nodes in the
columns associated with each node in Ci and creating a list of lists. The list associated
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with each node w is the desired set of coarse points. Nodes like u are contained in
ST
w ∩ S

T
c where c ∈ Tw.

If Swis available, then its updates are trivially done at the same time as those of
ST
w . Keeping the column and row data structures consistent is only important relative
to the coarse nodes that are selected on each step. The extra overhead in computing
the intersection of the Sw and Ci on each step given that some unnecessary edges to
undetermined or coarse nodes may still be in Sw should be insignificant compared to
the cost of keeping all row and column data structures consistent. Also note this may
have implications as to how the coarse nodes are represented. It may be useful to not
only be able to distinguish coarse nodes from noncoarse nodes but also to distinguish
coarse nodes in Ci from coarse nodes in Cj where i 6= j.

for each node n ∈ Gi − Ci

Tn = Sn ∩ Ci

Rn = ST
n ∩ Ci

Sn ← Sn − Tn

ST
n ← ST

n −Rn

Decrement µ(n) by ‖Rn‖
for each coarse node c ∈ Tn

ST
n ← ST

n − ST
n ∩ S

T
c

Decrement µ(n) by ‖ST
n ∩ S

T
c ‖

end for
end for

4 Implementation Details

There are several ways to implement each of the versions above based on decisions
concerning supporting data structures, parallelism, and architectural issues. In this
section, some basic approaches to these support issues are discussed. We assume that
the edge information represented in row and/or column data structures cannot be
destroyed. So we must use a procedure that allows an index to have “removed” status.
This also implies that at some point in the algorithm removed nodes must have their
row and/or column data structures restored, i.e., the indices must be replaced so as to
indicate presence in the graph.

4.1 Handling Vertices and Edges

For all of the versions above, membership of a node in Gi is maintained. This member-
ship must also allow easy association of the nodes in Gi with a loop schedule that may
or may not be parallel. The easiest way to accomplish this is by using an indirection
vector, graph array(1 : N), that is initialized to 1 : N . A loop over all nodes in Gi is
then simply a loop from 1 to some position that contains the last index of a node still
in Gi. Removal from Gi corresponds to moving an index of a node from the region of
the vector that contains nodes in Gi to one that contains those that have been marked
coarse or fine. As long as no ordering is assumed on the nodes in Gi removal can be
accomplished in O(1) time by swapping the index to be removed with the last index
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in Gi thereby extending the removed region of the vector by 1 and decrementing the
position of the last retained node by 1. The structure of the vector can be generalized
to keep Ci and Fi nodes together as well. This saving of coarse and fine indices assumes
that some information about the coarse or fine nodes must be kept beyond whether
or not they are coarse or fine. In most cases, this will not be needed, since a second
vector cf(1 : N) that contains at least binary information concerning coarse and fine
status is also assumed. How to use cf is discussed in more detail below.
Membership in Gi also implies manipulation of the status of edges contained in the

strength matrix. In the case of the algorithms discussed above, two or three states
may be needed for an edge: removed, active, and possibly removed and connected to
a C-point.
The information that two nodes are connected needs to be kept, even if the edge has

been removed, in order to recognize that a node is connected to a point that will at a
later time become a C-point. Consequently, an edge should never be actually removed,
but only marked as removed. This can be accomplished by setting active edge indices
positive and removed edges negative.
Since in part of the algorithm only edges in active states are processed, it is more

efficent to keep the row information so as to access these nodes only. This is easily
done by maintaining a separation among the two main states of active and removed.
A way that uses only an extra integer per point would be to swap the elements within
the data structures. Different groupings are necessary here for the three different
implementations mentioned in the previous section.
For the CSR implementation, three types of edges need to be distingushed, active,

removed and removed connections to C-points. The edges should be grouped in each
row in the following way:

removed active removed connections to C-points

This implementation requires two extra integers per row, which act as pointers to
where each of the states starts, and which are changed, whenever points are swapped
out of one group into another. This allows for much more efficient computation, since
loops can be shortened in part of the algorithms, and edges that have been removed
do not have to be touched. It also clearly marks where to find removed connections to
C-points.
For the CSC implementation, in which edges of non-coarse neighbors with a common

C-point are removed from view of the C-point, only two states need to be distingushed,
removed and active.

removed active

Now only one integer pointer per row of ST is needed.
Finally, in the modified verion, where both S and ST are available, we need a

combination of the above approach. For ST , the column structure, three types of
edges should be distinguished, active, removed and removed connections to C-points;
for S, the row structure, only two states are necessary, active and removed, leading to
three additional integers per point.
The use of swapping elements can lead to significant savings in time, as our exper-

iments in Section 4.4 show.
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If the active nodes are to remain ordered within the column or row associated with
each, then extra care must be taken with the removal of marked edges. The easiest way
to do this is to compress as shown in the suggested implementation but rather than
swapping marked edges to the beginning of the removed edge portion immediately,
copy the indices to a temporary vector for later insertion. This allows compression
of the kept edges to be done simply while scanning the nodes. More complicated but
less storage intensive ways are also possible that involve maintaining multiple pointers
during the scan. Note, however, that if the input data structure that is given by the
user is not changeable then duplication or scans must be used to find active nodes in
each row or column’s data structure portion.

4.2 Status Information

All of the algorithms discussed above require some sort of status vector, here referred
to as the cf vector, to store global information about coarse and fine status as well as
temporary information that aids in the computation of certain set intersections. For
example, it could be defined that during the processing of Gj , cf(i) is 0 if node i is
fine, j ≥ k > 0 if node i is a member of Ck, k + 1 if node i is undetermined, and
temporarily negative during the computation of intersections.
While this definition is more complicated than a typical 0 if fine, 1 if coarse, negative

for intersections, and positive for undetermined, it has the benefit of avoiding an extra
pass through the undetermined nodes of Gi in order to reinitialize the values of cf that
are updated during the determination of the next set of coarse points. It also provides
information in cf about the set of coarse nodes of which a particular node is a member.
The following algorithm demonstrates that two passes per Gi is sufficient. Initially,

the nodes in G1 all have their positions in cf set to 1, implying that they are all viewed
as members of C1. The checks on the weights are performed and each node, j, that
is in fact not coarse is identified and its value cf(j) is changed. If cf(j) was set to 0
a reinitialization pass would be needed to reset cf(j) to 1 for i ∈ Gi − Ci. However,
if the value of cf(j) is incremented, i.e., to 2 then the values indicate a noncoarse
node and are initialized properly for the identification of C2. Nodes that are in C2 will
have cf(i) = 2 and those that are not will have cf(i) incremented to 3. Therefore the
reinitialization pass is avoided, and cf(j) = i when j ∈ Ci.

4.3 Intersections

The main issue of performance for the sequential versions of the algorithms is the im-
plementation of the necessary set intersections in the most efficient fashion. Depending
on the particular intersection, the implementation may vary.
The cf vector is easily used to determine the intersection of a row or column with Ci

by checking the value of cf(j), where j ∈ Sn. If cf(j) = i, then j ∈ Ci. (Effectively the
intersection is really a membership test in Ci, since the algorithm is typically scanning
all members of a row or column.)
To determine the intersection, of say, two rows, Sn and Sv, with or without an

additional intersection of Ci, the cf vector can also be used. The values of cf(j) where
j is in Sn or possibly a coarse node in Sn ∩ Ci are temporarily set to −i. Common
coarse nodes that are the destination of edges from n and v ∈ Sn can be found by
checking cf(j) for j ∈ Sv. Note that in this implementation, Sn ∩ Ci is marked in cf
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once and all Sv for v ∈ Sn are processed before the cf(j) = −i (j ∈ Sn ∩ Ci) must be
reset to i. A similar procedure can also be used for a scattered Sn or S

T
n . Note the

key in the scattered intersection processing is the ability to clear the original scattered
information efficiently. If the row or column scattered is updated by the loop in which
the intersection is computed then the original scattered indices must be saved or it
must be possible to reconstruct them, or it must be known that the algorithm has
reset them appropriately as a side effect of processing in the loop.
It is also possible to process the scattered vector so as to remove elements while

scattered and then process them by either marking them for removal, reordering them,
and later removing them, or by immediate removing them. Suppose ST

n is to have
elements removed based on a computation that indicates which element of ST

n is to
be removed, but that is not indexed by a loop through ST

n . As a result, removing an
element j ∈ ST

n might require a search through S
T
n to find it and mark or remove it. If,

however, the indices of ST
n have been scattered and marked in the cf vector, then there

are effectively two copies of ST
n . The compressed version can be kept and used to drive

the gather loop. The scattered version can be used to indicate membership in ST
n , via

a negative value of a cf entry, and to have the element removed by resetting the cf
entry to its original positive value. This can be done, of course, without knowing the
position of the index for the element to be removed in the compressed ST

n structure.
When the elements are gathered back using ST

n , the mismatch between the index in
ST
n and the entry in cf having been reset to a positive value can be used to mark or
remove the element in ST

n .
If a work vector other than cf is available, then it is possible to perform the update

for several intersections without reinitializing by clearing. One need only initialize the
work vector for each coarse set iteration. This can be done when processing the coarse
nodes in the second pass that removes nodes in Ci, i.e., you can reset the corresponding
element of the work vector. The processing associated with each element of the c ∈ Sn

is simplified to a write only and when gathering for each n, one does not have to
update the work vector. The result is a very efficient computation of a series of unions,
elements of columns in Sn, and the intersections associated with each at the cost of an
extra integer work vector.

for each n ∈ Gi − Ci

for each c ∈ Sn

for j ∈ ST
c

work(j) = n
end for

end for
(at this point the union of the ST

c , c ∈ Sn

have n in the associated work locations)
for j ∈ ST

n

if work(j) = n then
remove j from ST

n

else
keep j ∈ ST

n

end if
end for

end for
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matrix CSR CSR, swap CSC CSC, swap mod mod, swap transpose

1 0.51 0.41 0.38 0.38 0.47 0.41 0.03
2 4.10 2.53 1.36 1.17 1.89 1.50 0.11
3 0.34 0.24 0.10 0.08 0.14 0.12 0.01

Table 1: Times in seconds for various test problems using different implementations

matrix CSR CSR, swap CSC CSC, swap mod mod, swap transpose

1 1.54 1.37 1.20 1.13 1.51 1.36 0.15
2 10.43 7.97 4.32 2.59 5.95 4.83 0.56
3 0.85 0.64 0.33 0.28 0.47 0.39 0.02

Table 2: Times in seconds for various test problems on ASCI Blue Pacific

The keep and remove operations can be done immediately as before. The scattering
of the value n allows the unions of the node patterns in each Sn to be distinguished.
Reads and writes have been reduced to the minimal amount.
Intersections need not always be found using information scattered into a vector

of length N , i.e., recoverable using the global index. If the indices in the row or
column are sorted, an intersection is easily computed using one pass through the row
or column. Maintaining the sorted order, however, does complicate the removal process
when vectors are used. If all of the edges to be removed are marked, then it is possible
to move them to the removed region and maintain sorted order while making the
equivalent of two passes through the active edges in the row or column. Of course, this
means that for efficiency’s sake it might be useful to add a “marked for removal” state
to the column-oriented versions even if they do not require them from an algorithmic
point of view. An alternative to maintaining all rows or columns sorted is to only sort
when you get to a final form, e.g., sort columns of coarse nodes. Then a moderate
cost intersection can be accomplished by using a binary search for each element in the
column of the noncoarse node. Sorted linked lists for indices within a row or column
are easily updated at the cost of doubling storage.

4.4 Sequential results

Various implementations using different data structures have been coded, and applied
to three test matrices:

1. a 7-point Laplace operator on a 50× 50× 50 grid,

2. a 27-point operator on a 50× 50× 50 grid,

3. an unstructured elasticity matrix with 10,923 variables and an average of 71
nonzeros per row.

The timings of the application of the coarsening to each matrix are presented in
Table 1 for a 1.5 Ghz Dell linux work station, in Table 2 for one processor of ASCI
Blue Pacific and in Table 3 for one processor of ASCI White.
The results show that the CSR implementation, which requires the least amount of

storage, is the slowest. However, using the swap option, described in Section 4.1, it can
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matrix CSR CSR, swap CSC CSC, swap mod mod, swap transpose

1 0.62 0.50 0.44 0.40 0.58 0.49 0.06
2 5.81 3.73 1.93 1.59 2.96 2.26 0.25
3 0.48 0.32 0.14 0.13 0.21 0.16 0.01

Table 3: Times in seconds for various test problems on ASCI White

be significantly improved. The modified implementation is faster than the CSR imple-
mentation, but slower than the CSC implementation. This version is more interesting
in the parallel case, since the availability of both S and ST decrease communication,
but require the update of ST as the CSC implementation, but also some update of
S, which is not needed in the CSC implementation. The overall fastest version is the
CSC implementation with the swap option. Here the use of swapping does not lead
to improvements as significant as in the case of the CSR implementation. The overall
improvements achieved from CSR to CSC, swap range from 1.25 for a matrix with
few nonzeros per row to a factor of 4 for a denser matrix. Improvements also vary on
different machines. The smallest improvements could be observed on 1 processor of
the ASCI Blue Pacific computer.

5 Distributed Memory Implementation

In this section, the implementation of this algorithm on a distributed memory ma-
chine is described. We assume here that each processor p owns a nonoverlapping set
of points. In order to correctly perform the algorithm, each processor requires the fol-
lowing information from their neighbor processors: the set δp of offprocessor neighbors
of local nodes, a sequence of ghost graphs, Gδ

i , with G
δ
0 = δp, the weights of the nodes

in δp (ghost weights), their status information (ghost cf values) and their row and/or
column information (ghost rows or ghost columns). The implementation defines what
type of communication is required.

5.1 CSR implementation

The CSR implementation requires the row information Sδ of the ghost nodes. We
assume that the information in Sδ has been filtered to include only local nodes and
nodes in δp, since all others are not reachable from any local node via one edge, and
since this leads to a more efficient implementation.
The second pass requires the status of the nodes (whether they ar coarse or not).

The filtered S is denoted Sf . The index information in (Sv)
δ need not be updated

during the coarsening. It is only used in computing Sv ∩ (Sn ∩Ci). Since it is assumed
that Ci and Sn are updated, nodes that have been removed from Sv during its updates
on processor q are irrelevant. They have either been removed by the initial filtering
or are ignored during the computation of the intersection. Their presence may of
course influence efficiency, but the intersection can be driven by (Sn ∩ Ci) to mitigate
any degradation. (Or an updated row could be sent if a substantial change in the
population of Sv has occurred.)
The main communication problem for the row-oriented version occurs due to the

need to update the ghost weights. This implies the need to maintain a decrement count
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for nodes in δp, to communicate it to the owning processors, to receive decrements for
nodes in nodes(p) that are members of δq for some q 6= p, to update the weights,
communicate the final weights to/from the other processors, determine the next set of
coarse nodes, and finally to transmit the new set of coarse nodes.
Also note that this affects the definition of δp. Since a purely row-oriented coarse

determination loop is used, nodes that are on processors that point to an interior
node on p must have their weights made available to p. Of course, their status is
not determined by p but is needed to determine the status of interior nodes in p. An
alternative to this approach would be to add another communication exchange, which
transfers the status of the boundary points to the neighboring processor after the local
maxima have been determined and compares the status of the changes made on the
neighbor processor to those compared on the current processor. A true local maximum
would be recognized as such on all involved processors. In this way the status of points
that were falsely identified as local maximum could be corrected.
The communication of the second loop and the synchronization within the row-

oriented implementation are therefore the main problems with this approach.
The complete algorithm with focus on required communication can be described as

follows:

send ghost measures and receive measure decrements
update measures
send measures and receive ghost measures
for each n ∈ Gi

if n ∈ Ci or n ∈ Fi

remove n from Gi

else
for v ∈ Sn

if µ(n) > µ(v) then v /∈ Ci+1 ∪ C
δ
i+1

if µ(v) > µ(n) then n /∈ Ci+1

end for
end if

end for
for each n ∈ Gδ

i

if n ∈ Cδ
i or n ∈ F

δ
i

remove n from Gδ
i

else
for v ∈ Sδ

n

if µ(n) > µ(v) then v /∈ Ci+1 ∪ C
δ
i+1

if µ(v) > µ(n) then n /∈ Cδ
i+1

end for
end if

end for
compute global graph size via global exchange
if global graph size = 0 stop
send ghost cf values and receive cf values
compare received cf values with current cf values

and correct falsely identified local maxima
send cf values and receive ghost cf values
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for each n ∈ Gi

if n ∈ Ci (the node is coarse)
for each v ∈ Sn

mark edge (n, v) for removal
decrement µ(v) by 1

end for
else (the node is undetermined)

for each v ∈ Sn ∩ (Ci ∪ C
δ
i )

mark edge (n, v) for removal
decrement µ(v) by 1

end for
for each v ∈ Sn such that

(n, v) is not marked for removal (noncoarse)
if Sn ∩ (Sv ∪ S

δ
v) ∩ (Ci ∪ C

δ
i ) 6= ∅ then

mark edge (n, v) for removal
decrement µ(v) by 1

end if
end for

end if
end for

An alternative to the accumulation of changes in the weights of nodes in the bound-
ary and their communication to the processors owning the boundary nodes is redun-
dantly computing information for the boundary nodes. This approach reverses the
point of view taken when designing the computation. The boundary rows are filtered
to include only indices within P ∪ δP and the boundary nodes are processed as if they
were internal nodes. This allows the boundary nodes effect on the weights of internal
nodes to be computed. Note that the computation on the boundary nodes does not
give the correct weight and status value for the boundary nodes themselves. These
are still computed in the processor that owns the boundary nodes. The keys to effi-
ciency are the filtering of the indices in the boundary rows to bound the number of
nodes that need to be included in the redundant computation and the small number of
boundary nodes relative to the number of internal nodes on each processor. The latter
is not always true and large redundancy can result as the grid becomes more densely
connected. Ideally, a hybrid of the two approaches would be used. Leading evidence
however suggests that the first approach involving computing and communicating the
changes to the weights of the boundary nodes is more widely applicable.

5.2 CSC Implementation

The CSC implementation, having been the most successful in the sequential imple-
mentation, has an additional difficulty in the implementation for distributed memory.
Since only the information of incoming edges for each node is available and not the
outgoing edges, the case of a node that has an outgoing edge to an offprocessor node
without an incoming edge is problematic. Such as a node might not even be included
in the ghost graph and therefore invisible to the processor. Therefore just as in the pre-
vious implementation, it is necessary to communicate ghost measures back and forth,
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in order to not obtain false local maxima.
Another difficulty arises due to the fact that edges connecting non-coarse nodes

with a common coarse neighbor need to be eliminated. In this case, it is possible
that a coarse point on processor p has two neighbor nodes, whose common edge needs
to be eliminated on processor q. Only processor p has this information and needs to
communicate it to q. This requires to send columns in (ST

n )
δ to processor q, to find

the edge in ST
n on q and to eliminate it there.

Taking all this into account, the distributed memory CSC implementation requires
the most expensive communication exchange.
The complete CSC implementation with required communication steps is presented

below.

send ghost measures and ghost columns for the points,
for which edges have been deleted

update measures and columns if necessary
receive ghost measures
for each n ∈ Gi

if n ∈ Ci or n ∈ Fi

remove n from Gi

else
for v ∈ ST

n

if µ(n) > µ(v) then v /∈ Ci+1 ∪ C
δ
i+1

if µ(v) > µ(n) then n /∈ Ci+1

end for
end if

end for
for each n ∈ Gδ

i

if n ∈ Cδ
i or n ∈ F

δ
i

remove n from Gδ
i

else
for v ∈ (ST

n )
δ

if µ(n) > µ(v) then v /∈ Ci+1C
δ
i+1

if µ(v) > µ(n) then n /∈ Cδ
i+1

end for
end if

end for
compute global graph size via all reduce
if global graph size = 0 stop
receive ghost cf values
compare ghost cf values with current cf values

and correct falsely identified local maxima
send ghost cf values
for each n ∈ Gi

if n /∈ Ci then (the node is not coarse)
for each v ∈ ST

n ∩ (Ci ∪ C
δ
i )

remove edge (v, n) and decrement µ(n)
end for

else (node is coarse)
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for each v ∈ ST
n

Compute S = ST
n ∩ (S

T
v ∪ (S

T
v )

δ)
Remove edges (p, v) from (ST

v ∪ (S
T
v )

δ) where p ∈ S
Decrement µ(v) by ‖S‖

end for
end if

end for
for each n ∈ Gδ

i

if n /∈ Cδ
i then (the node is not coarse)
for each v ∈ (ST

n )
δ ∩ (Ci ∪ C

δ
i )

remove edge (v, n) and decrement µ(n)
end for

else (node is coarse)
for each v ∈ (ST

n )
δ

Compute S = (ST
n )

δ ∩ (ST
v ∪ (S

T
v )

δ)
Remove edges (p, v) from (ST

v ∪ (S
T
v )

δ) where p ∈ S
Decrement µ(v) by ‖S‖

end for
end if

end for

5.3 Modified Implementation

In the modified implementation, the synchronization within a node is simplified con-
siderably. Assuming, that both S and ST are available, many of the previous com-
munication steps can be omitted, since we have the information of both ingoing and
outgoing edges from and to offprocessor nodes. For the most efficient implementation
with the least amount of communication, it is necessary to define δp as the union of all
neighbors that are connected to nodes located on p, regardless whether the connection
is incoming or outgoing. For a highly nonsymmetric matrix, this could lead to a set
δp that is significantly larger than the sets of ghost values considered in the CSR and
CSC implementations.
The ghost graph, the ghost measures, the ghost cf values, and the ghost column

information (ST
n )

δ are based on this definition of δp. The modified implementation is
now defined below.

send measures and receive ghost measures
for each node n ∈ Gi

if n ∈ Ci or n ∈ Fi

remove n from Gi

else (node stays for Gi+1)
for v ∈ ST

n

if µ(n) > µ(v) then v /∈ Ci+1 ∪ C
δ
i+1

if µ(n) < µ(v) then n /∈ Ci+1

end for
for v ∈ Sn ∩ δp

if µ(n) > µ(v) then v /∈ Cδ
i+1
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if µ(n) < µ(v) then n /∈ Ci+1

end for
end if

end for
compute global graph size via all reduce
if global graph size = 0 stop
send cf values and receive ghost cf values
for each node n ∈ Gi − Ci

for each v ∈ ST
n

if v ∈ Ci ∪ C
δ
i

remove edge (v, n) from ST
n and decrement µ(n)

end if
end for
for each v ∈ Sn

if v ∈ Ci

for each w ∈ ST
n ∩ S

T
v

remove edge (w, n) from ST
n and decrement µ(n)

end for
end if
if v ∈ Cδ

i

for each w ∈ ST
n ∩ (S

T
v )

δ

remove edge (w, n) from ST
n and decrement µ(n)

end for
end if

end for
end for

The boundary is, as with the CSR implementation, determined by a combination
of the first and second loop. The second loop requires columns from other processors
after they have become coarse. However, as with the CSR implmementation, they can
be exchanged at the beginning and need not to be updated during the computation.
Exchanging them only after they have become coarse would allow the development of
an algorithm that would not need space for all of the boundary column information.
As nodes that have become coarse are received, they could be treated by an alternative
algorithm that would complete the fan-in required to update each local column. The
details and tradeoffs for such an approach have yet to be considered, but a simple
compromise seems viable. At the beginning of the algorithm, space is allocated for
the entire boundary, but no index information is maintained, only fine/coarse status.
When a node is made coarse, the current active indices in the column associated with
that node are sent to its fanout processors, where they are filtered relative to locally
owned indices and translated appropriately. This would require a more complicated
message type structure.
These columns are for all nodes v /∈ nodes(p) such that v ∈ Sn for some n ∈

nodes(p). These are the same nodes as those in δp from the first loop of the row-
oriented implementation. As with the row-oriented version, only nodes in columns
that are in δp need to be kept, since they are the only ones that can appear in Sn ∩Ci

for n ∈ nodes(p). Note that this implies that Sn for n ∈ nodes(p) must contain indices
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# of procs CSR CSR, swap CSC CSC, swap mod mod, swap transpose

1 0.67 0.63 0.49 0.49 0.70 0.69 0.05
8 0.82 0.79 0.67 0.65 0.84 0.85 0.07
64 1.37 1.36 1.23 1.21 1.36 1.41 0.13
216 2.69 2.67 2.48 2.54 2.67 2.69 0.28
512 6.98 5.01 5.03 4.95 5.18 5.52 0.88

Table 4: Times in seconds for the 3d 7-point Laplace operator on ASCI White

of the nodes not in nodes(p).
The weight information for the boundary nodes determined by the Sn is needed

along with that for nodes v /∈ nodes(p) such that v ∈ ST
n for some n ∈ nodes(p).

Therefore the set of nodes in δp for which weight information must be maintained is
the same for the modified column and row-oriented versions.
Since the modified form has row and column information about nodes(p) ∪ δp and

weight decrements need not be exchanged, the communication associated with the
second loop is simpler than that for the row-oriented form.
First, the final weights of the boundary nodes need to be sent and received. The new

coarse points can then be finalized using a row/column pointer algorithm, i.e., explicitly
computing coarse points rather than the implicit form discussed above. Finally, the
new coarse/fine state of boundary nodes needs to be communicated. The last exchange
could also send the index information for coarse nodes for the version that delays
sending their indices.
It is arguable that this hybrid form that sends each column to its neighboring pro-

cessor only when it is coarsened is the minimal communication form of the algorithm.
Each coarse boundary column is sent to its neighbor exactly once. If we only send
an update in status, when a node becomes coarse or fine, then its status is sent to its
neighboring processor once (it can be initialized as undetermined without communica-
tion). The only information that can be sent multiple times is the weight. This also
can be sent only, when it changes, to minimize communication. The maximum number
of weight changes, a communication to neighbor bound, is the number of elements per
column and row.

5.4 Numerical Results

Tables 4, 5 and 6 show numerical results for various test matrices on varying number
of processors on the ASCI White computer.
The results for a 3-dimensional 7-point Laplace operator in Table 4 show only

small changes in the performance between the various implementations. Note that
the difference between CSC and modified implementation decreases with an increasing
number of processors, showing the influence of the additional communication that is
required in the CSC implementation.
Table 5 shows results for a 27-point operator, with a larger amount of nonzeros per

row. Just as in the previous experiment, the performance difference between the various
implementations decreases with an increasing number of processors, showing again
the influence of communication. Now the factor of fastest implementation to slowest
implementation is only about 2.3 compared to almost 4 in the one processor case. Also
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# of procs CSR CSR, swap CSC CSC, swap mod mod, swap transpose

1 5.83 4.10 2.08 1.70 3.09 2.52 0.22
8 6.38 4.59 2.53 2.14 3.47 2.90 0.32
64 8.16 5.54 3.48 3.12 4.29 3.71 0.45
216 8.76 6.90 5.50 4.42 5.51 5.03 0.61
512 15.95 12.13 9.87 6.92 8.59 7.92 0.92

Table 5: Times in seconds for a 27-point operator on ASCI White

# of procs CSR CSR, swap CSC CSC, swap mod mod, swap transpose

16 0.59 0.47 0.28 0.28 0.32 0.27 0.04

Table 6: Times in seconds for an elasticity problem on ASCI White

note that the influence of communication on the performance for the CSC and the
modified implementation is even more noticable. Whereas, the CSC implementation
is faster for a small numberof processors, it is about the same for 216 processors and
even slower for the 512 processor case.
Finally, Table 6 contains the results for a 3-dimensional elasticity problem with

215,055 variables and an average of 56 nonzeroes per row.

6 Shared Memory

6.1 CSR Implementation

The CSR implementation described above would at first glance seem to be highly
parallel. In fact, there are some synchronization difficulties that must be addressed.
Assuming a parallel iteration, where each row, i, is processed on a single processor, the
update of the column weights of nodes that are removed from Si by that iteration is
the most obvious operation in need of synchronization via a lock variable. The major
synchronization problem, however, arises due to the manner in which the Si data
structure is manipulated. In the version above, when nodes are marked for removal,
they are swapped to the end of the active list, where they form a new first node in the
marked list and removed on the second pass. As a result, the data structure for any
row is modified by the iteration, and it is possible for another processor processing,
say Sj , where j ∈ Si, to modify Sj during the scan of Sj by the iteration processing
Si. To see this, assume both iterations are active, and the iteration processing Si has
read up to the middle of the index list in Sj . Now suppose at that time the iteration
processing Sj detects the first element on the list is coarse and should be removed.
It swaps the first index in the active node list of Sj with the last node. So when the
iteration processing Si gets to the last index in the active list of Sj , it will read an index
that it has already processed and, since it has been swapped to the first position, the
index originally in the last position in Sj will not be read by the iteration processing
Si. Note this example also demonstrates that simply locking Sj during individual
swaps does not fix the problem. One could attempt to lock a row, while it is being
processed, i.e., no other iteration can read a row, until it is finished updating itself. The
main difficulty with this approach is, when such locking is done, it is possible to create
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deadlock between two nodes that appear in each other’s row list. The most reliable and
probably inefficient way to fix this is having a row, i, attempt to lock the row structure
of all nodes, j, whose indices it has in its row list. As it succeeds in locking each row,
j, it copies the Sj current list into workspace private to the processor executing the
iteration processing Si, then unlocks Sj . When all rows, j ∈ Si have been copied to
workspace, Si can lock itself (assuming no other iteration is making a local copy) and
proceed with its update. This approach requires considerable workspace and may have
significant synchronization delay.
The easiest way around the extra space and synchronization above is to remove the

modification of the row structure and revert to a very simple row-oriented version that
simply marks nodes for removal in situ. The loops in such a simple row-oriented version
are essentially parallel. The basic iteration body comprises visiting each active node
and its row and performing updates. Only the iteration associated with each node
performs writes to the node’s information, therefore no synchronization is required,
when marking an edge for removal. Iterations processing other nodes may read the
updated information, but the mark for removal is irrelevant to their operations and,
since the information in the list is not moving, nothing is lost. This approach, of course,
suffers from the problem of having to pass through all indices on the active list any
time a row is processed.
As noted earlier, synchronization is required for each edge removal due to the update

of the weights. This will require additional storage, and the number of elements of the
weight vector most effectively protected by a single lock should be evaluated. Note,
for CLJP the weight is not an integer. So it is not possible to exploit a memory-
based fetch and decrement. If such an instruction were available, then it would be
worthwhile considering splitting the µ(i) into two components: the integer portion
based on incoming edge count and the random number between 0 and 1 that is initially
added to the count. The update to the weights and the comparisons for active/removed
need only be done on the integer portion.
We can therefore create the following simple shared memory row-oriented version

of the first pass through the active nodes. Dynamic scheduling is assumed, i.e., nothing
is done that assumes static scheduling.

parallel do each node n ∈ Gi

if n ∈ Ci then (the node is coarse)
for each node v ∈ Sn

mark edge (n, v) for removal in Sn

critical–section(decrement µ(v) by 1)
end for

else n /∈ Ci ( the node is not coarse)
for each node v ∈ Sn

if v ∈ Ci

mark edge (n, v) for removal
scatter v in work vector
critical–section(decrement µ(v) by 1)

end if
end for
(At this point T = Sn ∩ Ci is scattered)
for each node v ∈ Sn
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if (Sv ∩ T ) 6= ∅ then
mark edge (n, v) for removal
critical–section(decrement µ(v) by 1)

end if
end for
for each node v ∈ Sn

if v ∈ Ci

clear v in work vector
end if

end for
end if

end parallel do

Nothing is explicitly considered in the suggested CSR implementation to enhance
locality so as to better exploit the two levels of cache present in each node. Since each
row is scanned and updated, there is spatial locality with respect to those particular
reads and writes. Each row performs repeated reads of the cf vector to check for
membership of destination nodes in Ci. The only locality (spatial or temporal) that
would result in these reads would depend upon the ordering of the nodes and their
connectivity. If nodes were ordered by a scan that placed nodes near their neighbors
(similar to the ordering required for distributed memory) the level 2 cache behavior
of access to cf might improve. The repeated locking and updates of the weights
could cause false sharing problems. It is perhaps worthwhile to group the cf(i), int–
measure(i), rand–measure(i), and lock(i) into a single row of a matrix or a structured
element of a vector. This assumes a 4 word cache line in the node.
A difficulty with the simple version above or the more complicated synchronized

version is the method, in which scattered vectors are handled, when preparing for
membership checks, e.g., intersections. The main difference between the shared mem-
ory parallel and sequential implementation concerns the use of cf or a work vector
in the computation of the various intersections discussed above. Since multiple rows
will be active simultaneously, care must be taken to provide the necessary private
workspace per processor. If this workspace is deemed excessive, then the use of or-
dered indices within the row vectors should be considered with appropriate changes to
the computation of the intersections.
For example, suppose cf is used to compute the intersections. The sequential

iteration for node n uses cf to mark Sn ∩ Ci. When done in parallel, the values in cf
would reflect the union of p intersections and therefore, when the intersection with Sv,
where v ∈ Sn, is computed on a processor, it is impossible to tell of which intersection
a particular entry in cf is a member. This could be remedied easily, if it was known
that the Snj

∩ Ci j = 1, . . . , p were disjoint. Since they are not, a more complicated
approach is required.
If the number of processors is less than the number of bits in the integers used to

represent an element of cf , then the problem can be solved. Node j can be a member
of at most p intersections at any given time. This can be represented by, say, the p
low order bits in the representation of cf(j) (recall cf(j) will be a negative integer,
−i if j ∈ Ci in the sequential implementation). Membership in Ci and at least one of
the currently active p intersections will be indicated by −a where 0 < a < 2p. When
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membership in a particular intersection, i.e., from the processor’s making the inquiry,
the appropriate bit is checked. At the end of each iteration, when the Snj

∩ Ci is
cleared, this amounts to clearing a particular bit (and restoring i to the location, if
it is the last intersection to be cleared for node j). All writes must be done under
lock to avoid erroneously handling multiple clears and marking, but reads can be done
irrespective active updates, since the processor that clears a particular bit is also the
one that examines it.
Note that the clearing portion of the iteration requires rescanning all of Sn or

saving the indices of the intersection S. Storing S requires work space of the size of the
maximum row count private to each processor. If this is acceptable, the synchronization
required in the approach above can be avoided by scanning the entire list of S. This
could be accelerated by sorting S after its computation. However, if rows are fairly
small, then simply storing and scanning for membership is probably the best way to
go.
In the current row-oriented form of the algorithm, the second pass through Gi

performs the removal of coarse and fine nodes from the nodes vector. In the sequential
implementation, this simply requires altering a pointer to the end of the active part of
the vector and swapping the removed node with the last active node. When dynamic
scheduling is used in a shared memory implementation, this simple strategy is no longer
adequate. Locking the pointer is possible as is swapping, but there is no guarantee in
a general dynamic scheduling algorithm that the swapped in node is not already being
processed, or, if not, that it ever will be, when moved to the new location in the vector.
(This assumes that one is using an OPENMP-like dynamic scheduler, where given a
loop of iterations i = 1, n the compiler and runtime library are free to schedule in any
way they see fit without user knowledge or approval.)
There are three main ways to solve this problem. One is to implement a specific

dynamic scheduling mechanism that would have more coordination between executing
the iterations that may be swapped from the end of the list. This, of course, would
increase the scheduling overhead and is probably not worth the effort at this point. The
second is to move to statically scheduled loops, where each processor would have its
own local portion of the removed locations that it would expand as some of its nodes are
identified as coarse or fine. This is a simple solution, the main problem becomes load
balancing. In this case the portion of the vector assigned to each processor would vary
and the removed locations would become fragmented adding overhead to the scan of the
list, i.e., more than just active nodes would be visited. As a result, occasional garbage
collection would be required. Even then the algorithm for static scheduling would have
to be carefully considered. The processing time for each node varies considerably, and
therefore simply balancing the number of nodes sent to each processor may not be an
adequate strategy.
The most straightforward solution at this point is to use extra storage (similar to

what would be needed, if the active nodes were maintained in a linked list). In this case,
the first pass through Gi would remove Ci, not by explicit action on the coarse nodes,
but by adding noncoarse nodes to a second nodes vector, nodes2. This list would grow
by locking a pointer to the first open location in the vector, and a processor would add
one or more noncoarse nodes in Gi to it. At the end of the first pass through Gi, the
vector nodes2 would have Gi−Ci. The second pass through the graph identifies Fi and
removes it in a similar manner, i.e., nodes not in Fi would be written to a new version
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of the original nodes vector. As a result, the nodes vector would contain Gi+1 and
the subset Ci+1 would be identified in the vector cf . Note that not all of the versions
described above assume that Ci is removed during the first pass. All of them however
allow this option.
The actual updating during the second pass of the status of nodes in nodes2 from

assumed coarse to noncoarse by multiple writes per node to cf does not require any
synchronization, although there should be some performance degradation due to the
coherence mechanism.
Finally, note that when a node is removed from the graph, its row indices can be

restored to their original input values. This must be done at some point, before the
algorithm returns, and the second pass is a convenient point so to do. The coarse
nodes may have been removed and restored in the first pass. Below we assume this has
not been done. (The parallel pseudocode shared memory implementation does assume
this.) The second pass is completely parallel so the code above is easily changed into
the following.

parallel do each node n ∈ Gi

if n ∈ Ci then (the node is coarse)
restore all edges in Sn

remove n from Gi

else if µ(n) < 1 and ‖Sn‖ = 0 then (the node is fine)
add node to Fi

remove node from Gi

restore all edges in Sn

else (node stays for Gi+1)
remove all marked edges from Sn

for v ∈ Sn (all unmarked edges)
if µ(n) > µ(v) then v /∈ Ci+1

if µ(n) < µ(v) then n /∈ Ci+1

end for
end if

end parallel do

6.2 CSC Implementation

The synchronization required by a parallel version of the suggested column-oriented
approach is simpler than the row-oriented version. A noncoarse node only scans and
updates its own list. It does not update any other node. A coarse node scans and
updates its own list and scans and may update the columns of noncoarse nodes in its
column list. As a result, deadlock cannot occur from locking a column.
The parallel column-oriented strategy (including the immediate removal and swap-

ping of elements on the index list) is the same as the suggested sequential version,
except for processing the main loop over the active nodes in parallel and adding the
following synchronization considerations:

• A column that is not coarse locks itself at the beginning of its iteration.

• A column, i, that is coarse need not lock itself, when processing its own column
index list. It must, however, obtain, in turn, the lock for each of the columns
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that are not coarse and contained in ST
i and release it only after completing the

update.

Given such a simple synchronization strategy, the main concern with the parallel
column-oriented algorithm is the processing strategy for the simultaneous scattered
vectors.

6.3 Modified Implementation

Both suggested sequential versions of the modified column-oriented approach have
trivial synchronization. A parallel loop over the nodes only requires the barrier implicit
in the starting and ending of parallel execution. During the loop, no synchronization
is required between parallel iteration. The source of this efficiency is easily seen for
both versions. Coarse nodes are not updated during the iteration. A noncoarse node, i,
updates only its own list by removing coarse nodes and by combining with the columns
of coarse nodes contained in Si. The two suggested implementations differ only in the
manner, in which the processing of this combination is done. As a result, from a
synchronization point of view the modified column approaches are optimal.
Of course the complicating factor, as with all of these shared memory approaches is

the parallel scattering workspace. The first suggested implementation of the modified
column approach can use the bit per processor approach in a work vector as described
above. The second implementation, however, depends heavily on having a work vector
of integers with length equal to the number of nodes in the graph per processor. This
is feasible only for a moderate number of processors.

7 Conclusions

The use of different data structures and their effect on the implementation of the CLJP
algorithm, a parallel coarsening algorithm, has been investigated in detail. Numeri-
cal results for both sequential and distributed parallel implementations show that the
fastest implementation is the CSC implementation with a swapping mechanism, even
if the transpose of the strength matrix is not available, and a transpose needs to be
performed. In this case, memory usage is, however, increased, and the CSR implemen-
tation would be the one with the lowest memory usage.
On a parallel distributed memory computer with high communication cost, the

modified implementation might be the fastest, since it has the lowest communication
cost.
Finally, the theoretical investigation of the shared memory implementations shows

that the CSR implementation is the most problematic implementation, whereas the
CSC and the modified implementation can be parallelized in a fairly straightforward
way.
When deciding on a data structure, one needs to also consider that the coarsening

algorithm is just one part of a larger algorithm, the algebraic multigrid algorithm. The
final choice of data structure is affected by other factors as well, such as memory usage,
and which data structures are suitable for other parts of the code. For example, for
the interpolation routine a CSR data structure would be the more natural choice.
Nevertheless, this investigation shows how important it is to carefully select the

data structures before implementing an algorithm, since they can have a significant
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effect on the final performance.
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